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The problem of determination of currents and electric fields in a slightly
conducting fluid moving in a flat channel in a perpendicular magnetic fleld
has been examined by a number of authors [1 to 4#]; the most comprehensive
of these studies belong to A.B.Vatazhin.

In all references mentioned, calculations of fields and currents were
carrlied out under the assumption that the clectric conductivity of the fluid,
the distribution of velocity, and the external magnetic “ield (to all of
which we will refer subsequently as controls), are somehow or other glven
functions of coordinates. In those cases where 1t was possible to obtain a
solutlon for controls which were prescribed arbitrarily in a certaln class
of functions {for example, for constant conductlivlty and constant magnetic
field, while the velocity depended only on the transverse coordinate) it was
permissible to select such functions from the indicated classes which cor-
responded to optimum regimes in a definlte sense,

However, general solutions of this type can be obtained in quite rare
cases. On the other hand, if the problem of optimization {in a definite
sense} is presented from the very beginning for the distribution of currents
with respect to controls which can be selected from functions of some {if
possible, sufficiently broad) class, then for the solution of thils problem
the knowledge of distribution of currents for arbitrary control in the indi-
cated class 1s not required at all *. A general method of solution fur this
type of optimum problems Iin mathematical physics was developed in [5]. 1In
this reference a procedure 1s indicated which allows, from the very begin-
ning, to isolate controls which can only turn out to be optimum (Welerstrass
condition). Further investigatlon 1s confined only to selected controls and
In many cases can be carried to conclusion.

* If, however, such a solution 1s known, then the search for optimum con-
trols 1s simplified in a corresponding fashion: the protlem of Mayer-~
Bolza of variatlional calculus reduces to the simplest case. Besldes,
it Is understood that no special methods are required for the determi-
nation of the optimum control.
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The present study contalins an example for the application of the general
theory developed in {5]. The problem of finding the optimum control ofx,y
among sectionally continuous funntions a(x,y) conductivity of the fluids
of two independent variables 1s examined. The functions satlsfy the inequali-
tY Omin SO, ¥) < Syg,x - The optimum control o(x,y) corresponds to a dis-
tribution of currents and tc a distribution of electric fleld which satisfy
certalin experimental requirements. These requirements, together with con-
diticns for the problem, are formulated in detail in Section 1.

The scolution of the problems turns out to be sufficiently simple; this is
of course connected with the fact that the control c(x,y) enters linearly
into the original equations. Because of this the inequality, limiting possi-
ble values o{x,y) , plays a decisive role in the determination of the opti-
mum control,

1. The distribution of current J and potential of slectris fleld
in & oconducting medium moving with the velocity v¥(v{x,y),0,0) in a mag-
netic field B{0,0, — 5{x)) 1s described by Equations [1]

div j =0, j = o-(—gradz' + — [v, B]) (1.1)

Here ¢ 1s the electric conductivity of the fluid.

We will consider functions wv(y) and B(x) as given. As is well known,
this corresponds to the frequently used in magnetohydrodynamics approximation
of small magnetlc Reynolds numbers when the distribution of veloclitles practi-
cally coincides with the hydrodynamic distribution and the induced magnetic
fields are negligibly small *.

As for the function g¢(x,y) , its values are determined at any point in
the stream by the possibility at our disposal of controlling the conductivity
of the fluid. As a rule those possibllities are limited and in the best case

one succeeds in reaching some maximum value of conductivity O * On the

other hand, the conductivity of the fluid itself (in the absence of externdl
y interactions such as heating **, addi-
éR tives, etc.) determines the minimum

H § 3 F £ possible value ¢ Therefore, it

— .is *
& can be assumed that the conductivity

3 3 - in all cases satisfies the inegquality
n) Omin <0 (%, ¥) < Omax (1.2)
A ] T ¢ D
This inequality 1s quite essential
for the following treatment.
Fig.1l

Introducing the notation

J = — curi(kz?), je = 0t Iy = T4 p=1/¢ (1.3)

* Functions wo(y) and 5{x) are fixed only for the purpose of simplify-
ing the optimum problem, It is possible of course to optimize the dis-
tribution of currents with respect to these controls also.

** We neglect the temperature dependent change in conductivity due to Joule
heating.
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Equations (1.1) and inequality (1.2) are written in the following form

ozl azl B 2 0]
==—f =+, (2 C") 5 PO =
2 _ g =y, CON (1.4)

Pmln<p (z, y)gpmax
The boundary conditions of the problem can be most diversified. We will
examine the case where the walls y = +8 of the channel (Fig. 1) are insu-
lators everywhere with exceptlon of regions |x| < A , which are located on
both walls opposite each other and which represent ideally conducting
electrodes [1]. The latter are connected tfhrough the load & , through
which electrical current flows when fluid moves in the magnetic fleld.

A
={ 0@ +o)ds (1.5)
A
Wé also present the following expression for the magnitude of Joule losses
) o
0= ay§ det@y + @rlet ) (1.6)
—3} —00

For the schematic shown in Fig.l, the problem of conductivity control of
the fleld will be solved in such a manner that (Problem 1) the functional 7
will reach the maximum possible value or (Problem 2) the functional ¢ will
reach the minimum possible value.

The boundary conditlions for the problems presented will be spelled out in
Section 4.

2. Rquations for lLagrange's multipliers, Probl em 1 . According
to [5] ) B .
HY = — Eplt 4+ B0+ "h(c_ it P?) — Mt —
— I [(Pmax —p) (p — Pmin) — P*zl (2.1)

Here p, 1s an additional cohtrol and E,, n,, ['* are Lagrange's multi-
pliers *. The conditions for stationary state are reduced to Equations

a%,/ 0z + om,/ ay = 0, AL,/ 0z + dny/dy =0

(2.2)
g + 19 = 0, pn — E, =0
£, + tny, — I'* (2p — Pmax — Pmm) = 0, IP*P* =0
The additional control p, is introduced by Equation
[(Pmax — P) (P — Pmin) — Ps2 =0 (2.3)
* In this paper the notation €g,, ... 1s used for quantities denoted in

[5] by €y + myy
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It 1s convenlent to convert Equations (2.2} to another form; let us intro-
duce functions w,{x,y} and w,{x,y) through the relationships 2.4)

g = — 0w,/ dy, E, = — dw, / 9y, 1, = 0o,/ dz, 1), = 0w,/ 0z
The first palr of Equations (2.2) 1s satisfied identically; the second
palr 1s now wriltten as

pdw, / 8y = dw, / dx, now, / 0z = — dw, / Oy [(2.5)
Eliminating w, and w, we subsequently find

2,301 dor _o 9 Ldm 0 1w 2.6

3z +8y Ty T dr p Iz 8y p 9y (2.6)

Problem 2 . Function ¥y 1s equal to
H® = Y —p [(Q) + (2] 2.7
Equations for Lagrange's multipliers have the form
0%,/ 0z + an, / 0y == 0, 9,/ 0x + dnpy/ dy = 0
P& + My + 208t = 0, Py — & + 2082 =0 (2.8)
D& + 0y — T* (20 — prax — Paun) + (G2 + (@22 =0, T#*p, =0

We will introduce functions wm(x,v) and wz(x,y) according to Formulas
{(2.4). The second pair of Equations (2.8) 1is now written in the form

oo + T 208 =0, PR+ =0 (29
or, if Equations (1.4) (second line) i1s taken into account
0 a a
Pay 0+ 28) —FE=0, po(e+2)+ =0 (210

It w, and w, are elifinated Phom Equations (2.9), then, Ymking Into
account the last equation in the second line of (1.4), we will consequently
find

a 6&)1 8&)0__ 2 g 7 8(1)2 a 1 6&)2 -
%P T oy ay — 25 0B) we o Ty e ey =0 (21D

Boundary conditions for functions w; and w, have different forms for
different initial boundary problems. These conditions will be spelled out
in Section 4.

3. Welerstrass oondition, Problem 1 . According to the Weier-
strass condlitlion the difference

AHY = HW (p, T, 8) — HY (P, 2}, 2% = — &, (o1 — PZY) +
+ & (87 — Z%) — 0y (pT2 — PZ2) — m, (§' — 2Y) (3.1)
must be positive for all permissible P, Z', 22 ; those values of these

variables will be admissible which are connected with the optimum values of
o, ¢, {® through Equations
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(T — PZY) 2 + (e — PZ) y, =0, =2z —(0'—2ZY)y, = 06.2)

Here x, and y. are any real numbers which satisfy the conditipn X 2+
+ ¥:.® =1 and which have the significance of directional cosines of the
tangent to the curve of possible discontinuity of conductivity. Equations
(3.2) express continulty of functions g' and z° along this curve.

We emphasize that contrels p and P satisfy the last inequality (1.4).

The system of Eguations (3.2} permits to eliminate the variables 2! and
Z® from Expression (3.1). After introduction of functions w, and w, and
vector J(¢',(®) the Welerstrass condition assumes the form (we omit the

calculations)
w _ —P (p—P . 0O, .
AHY = — 5 (—'E—-]n Bn } grad (02) >, 0 (3.3)
Let n be the direction with direction cosines (y,, ~ x¢); inequality
(3.3) must be satisfied for arbitrary n .

The structure of the left side in the last inequality shows that the two

cases are possible
p—P

, 0w .
o s= >0, A=sjuyz’—] grade, <0
—P 70} .
2) S:pp < 0, A:s}ﬂtﬁ—}gradm2>0
Case 1. First of all we note that from the inequality g > O and

the last inequallty (1.4) it follows that p = Pam - For p =p,, the para-
mever g+ varies within the limits
0 st —200n g < 1 (3.4)
Pmax

Let us assume that J.grad e,<© It 1s clear that here the condlition
A,SQ{} is not fulflilled because a d.rectlion n can always be found for
which j,3w,/3n = O . The case J.grad w, > O remains. If the direction
n 1s located within angles gos (Filg. 2}, which are bounded by straight
lines perpendicular to vectors § and gradw,, then jﬂaw,/Bn < 0, and the
ilnequality 4 sg () is satisfled. If n 1s located outslde the angles qob,
then 1t is necessary to find the maximum of the function

. 0w ,
f (fP, ‘P) = Smax/n % == Smax]!grad ‘-‘)‘21005(@ €os P

for conditions (see Fig. 2) § =y t o, x = const , and 1t 1s necessary tc
require that the corresponding value of 4 be negative. It 1s easy to
verify that the function f(gp, y + ) reaches a maximum at o = — 3y, i.e.
for a direction n , which devides in half the acute angle yx . For this
direction

Fmax = f (=Yg, /2 %)= Smax] | grad (‘)2|0052 M%)
The corresponding value of 4 1s equal to
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Amax = j|grad @,] [8max cos? (V5x) — cos %]

According to statements above we must have
Smax €082 (/%) — cos x << O

or
(Smax — 2) cos? (t/yx) + 1 <0
From thils .
A< 2 o S (3.5)
— ¥max

We recall that for
jograd 0, >0 [x{<n/2

If one takes into consideration lnequality
Fig. 2 (3.4), it becomes clear that in the case under
examination condition (3.5) limits from above
the absolute value of the acute angle y between vectors J and grad uw;.
The value of the upper limit depends on 8 max’ this limit is equal to @n
for smax* O (0 pnin = Pmax) 214 to O for gpo =1 (p . =0 or p . =o).

Case 2 Considerations quite analogous
to the ones presented above lead us to the
inequality (Fig.3)

%> 2 con (3.6)

N S
V2 — *min
which is fulfilled for the conditlion
j-grad 0,< 0.

Parameter 8 min is determined by Formula

P max
S = 1 — Pmax
Pmin Fig. 3
and in case 2 Smin St s <0

As we see, the inequality (3.6) limits from below the absolute value of
the obtuse angle y between J and grad w, . The magnitude of the lower
limit depends on the value sg,. ; this limit is equal to n/2 for s,;=0
(pmin_ = pmax) and to w for sap.. = _‘”("n;in =0 or Pmax ™ w)

Simultaneously we establish that the condition 4 = O can be fulfilled
{if one abstains rrom special cases § = O or grad w, = O) only on indi-
vidual curves and not in entire reglions; this follows from the detrmination
of the quantity 4 which contains the invarient component sf,3wy/3n .

In addition to thls, the scalar product J.grad w, cannot become zero in
the optimum regime (with exception of cases mentioned above) because in the
opposite case, apparently, the Welerstrass condition would be viclated.
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Results of material presented above are summarized in the following way.

Theorem. A maximum of functional I with limitations of {1.4)
can be achleved for the following optimum controls: (3 7)

1) P=0max for jrgrad @:>0, ¥ cost p
2Y p=0Omin for jrgradwy < 0, x> m — cos* p

Parameter p 1s determined by Formula

- Pmax — Pmin
Pmax T Pmin

Problem 2. In accordance with the Welerstrass conditlon, the
difference

AH® = AH — o (B + (91 + P (@32 + @] (3.8)

must be positive.

Following the reasoning carried out above for Problem 1, we will write
directly the analog to inequality (3.3); we obtain

(2) — Py . 2 —Py? . .p—P ., —P .
AH® = Q2D j e (e 122D graday + BT 020 (3.9)

As before, two cases are possible

—P . fw . . .
1) sx"—p—>0, A° = sju=—t— j-grad o, + spja® — pj* <O
—P . dw . . .
2) s=l—— <0, A° =gz~ — jgrad 0y + spja® — > >0
Let us 1ntroduce vector u = grad w, + pJ . It 1s not difflcult to see

that the gquantity 4° depends on u exactly In the same way as quantity 4
depends on grad w, . Therefore, in both cases mentloned we arrive at the
same conclusions with respect to optimum controls, as were cbtalined for
Problem 1 and fornulated in the theorem. The only difference consists in
that in the formulas of the theorem the vector grad w, should be replaced
by W , and that the angle Y should be given the slignlificance of the angle
between vectors J and u = grad wy + pJ . The latter angle, in agreement
with the theorem, may be elther acute {case 1) or obtuse {case 2). This,
however, cannot be said now about the angle between vectors } and graduw,.
This angle may be obtuse both in cases 1 and 2 (but acute only in case 1).
The condition indicated can result under certain conditions in nonuniqueness
of optimum regimes which are determined by the Welerstrass condition (see
Section 4). It 1s clear that there 1s nothing paradoxical in this because
the Welerstrass condition in itself is a necessary condltion for a strong
relative minimum. Within the framework of the utlilized method the absolute
minimum has to be determined by direczt computation of values of the function-
al for relative minima and by comparison of these values among each other.
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4, Ezample. Homogeneous magnetlic field B ; the velocity de-
pends only on coordinate y (a solution of the problem for the case of
constant conductivity was obtained by Vatazhin [1]).

A schematic of the arrangement is shown in Fig.l; boundary conditions
which express the constancy of potential 2! on electrodes, and the dis~-
appearance of the normal component of current density (°® on insulators,
and also conditions at infinity and Ohm's law for the electrical circuit,
have the form

z* (z, 4= 8) = z4! = const, [z | <A

2}z, 4 8) | x>a = z,%= comst, 2}z, & 0) jx<c-2 = 2_* = const
5
2100, -+ 8) — 2400, — 8) = (=00, + 8) — 2} (— 00, —8) = L B | vdy=e ,
3
zz(oo,j—_é)—zz(—oo,iﬁ) =R‘1[z+1—z_1] (41)

Problem 1 . Taking into account Equatlons (2,2) let us write the
following expression for the first variation of functional I . The expression
was formed by means of Lagrange's multiplliers [5] (see Fig.1)}

F H B D
(§ 4 §) tmadat + ngoztt @t — ({4 §) tnider + mader) ar +
E A c

G o A
+ § tnidat + vt ar — § (nioat 4+ ndatldr — [ 1502 + E0221 dt +
F B H
E
+ {1582t 4 80221 dr — 82,2 + 8222 (4.2)
D

Equating this expression to zero we obtain the boundary conditions for
Lagrange's multipliers; 1t is necessary to take into account in this case
that the varilations entering here are connected with relationships which
were obtalned by variation of Equations {4.1). In addition to this, verti-
cal sections g4 and DpF (Fig.l) should be moved to infinity. We obtain

on electrodes (FG and Eﬂj)

M =0 (4.3)
on insulators (LF, GH, AB and CD)
=20 (4.4)

at infinity
A

E 9
(na-{na=0 (ga={ta
H D D

i
o

(4.5)
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Terms remaining in (4.2) form Equation

-}

N, dt + 1] 8z.2% +

»

[§n2dt nzdt—-i]ézz+[gn3dt
G C
+\mdrezr —(nasr=0 (4.6)
F B

uufﬁ

Varlations entering here are connected through the relationship
8z,1 — 8z ! = R [82,2 — 627

Eliminating varlation 2z,' from (4.6} by means of this equation, we
arrive at a relationship in which the variations may be consldered already

independent and the corresponding coefficients may be equated to zero. We
obtain

G C
y mdr = n s
F
F D’ G
{mpdt — \ngdt —1 = — R, a
E C F
H B G}
ngdt—§ngdt+1-RSnldt 4.7)
G

We will write the obtalned relationships utilizing functions w, and u,
introduced above. We shall have
on the electrodes

o, (z, + 8) = wyy = const, 0w/ dy = 0 (4.8)
on the insulators
o (&, +8) |, = on = const, o (x, +9) [K”kz ®;- = const
dw,/ dy =0 4.9)

at infinlty
01(00,8) = @, (00, — 8), @, (— 00,8) = @, (— o0, — )
@ (00, 8) = ©, (o0, — 8, 0, (— 00, 8) = @y (— o0, — 8) (4.10)

In addition te this

0y — 0g- + 1= R [0 — @] (4.11)
If we now introduce the function u , which is related to z* by Equaticn
¥
B
w=2—Zvay (4.12)
0

then Equations (1.4) will be rewritten in an equivalent form
gz2 1 du 822 i du (4.13)

By T p ox’ oz p Oy
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and vector J becomes

j= —ptgradu

Equations {4.13) will coincide with Equations {2.5) if the latter equa-
tions w, 1s replaced by uw and w, by Zz° . A comparison of boundary
conditions {4.1) and (4.8) to {4.11) shows that for any function p(x,y) the
relationships

Z = g UL = &3 4.15
aooly. . (4.15)

Equations (4.14) and (4.15) show that vectors J§ and grad w, are anti-
parallel everywhere (x = 1) . Remembering Welerstrass criterion for problem
1 {theorem), we conclude that for the optimum regime p = p = ©€VETywhere,
a result which 1s in complete agreement with considerations of a physical
nature.

We note that utilizing solution [ 1), we would have also arrived at this
conclusion. However, the maximum of functiodal [ would have been determined
with respect to a class of functions of the equation which assume the same
constant value everywhere, while the result obtalined by the general method
[5] applies to a broader class of sectlonally continuous functions of two
independent variables.

Problem 2 In this problem boundary conditions (%4.8) to (4.10)
are preserved for Lagrange's multipliers; instead of condition (4.11) the
following equality 1s maintained:

02 — g + 2IR = R [(0y, + 22,)) — (0 + 22_3)] (4.16)

As before, we find that functions u {see {4.12)) and w, are related
by Equation

0=
T 2IRT?
The Welerstrass c¢riterion now assumes the form
—P — P,
AH(z)___PP p(ZleR____i)[Pp ]"z__]-z]>0

From this it 1s not aifficult to draw conclusions with regard to the
possibllity of the optimum regimes

D 2IR/ e <1, pP=0p,.
2) 2IR/e>1, p=rpyp
3) 2IR /e = 1, special case
For p = const the expression ZIR/k is easy to compute, it 1is equal to

(1] 2IR __ 2Ra
& = 20+ Ra

parameter a is given by the relation
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o I

Here Kk{k) is a complete elliptical integral of the first kind.

Inequalities which apply to regimes 1 and 2 take correspondingly the form

R<2 ., /a, R>2 . /a

From this it follows that for & < Eth‘j& only the control o = Py
possible , for R > 2pgex/  only the control p = § gy 1s possible, If
parameter R 1s included In the interval (2pgmin /&, 204./a) then the Weler-
strass condition permits both contrels p max and ¢min- A simllar possibl-
1ity was already discussed at the end of Section 3. It remains to point out

the citerion for the determination of an absclute minimum. It is easy to

is

verify, using expression [1] for function § for o = const
_ g? 2p
Q= RE/&)+RE o«
that the absolute minimum is reached when
P = Ppay when 207p,,, <R <207 V Pmax Pratn

P = P> whem 2071 meax Prin < <207 ppyay

As far as the special regime 1s concerned, it should be disregarded since
already with respect to the class of functions of the equation, which assume
a constant value everywhere, this reglme corresponds to a maximum and not a
minimum of functlonal J . This 1= confirmed by direct computation. The
Welerstrass criterion is fulfilled in this case in the weak sense.

In conclusion we note that all deductions made for Problem 2 could have
been obtained from the corresponding statements for Problem 1 with the aid

of Egquation
Q=1e —I*R

which holds for the case of homogeneous magnetic tield B

Here the results were cbtained directly for the purpose of illustrating
practlical examples which are typical for application of the general method

[s1.
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